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Abstract
In this work, I discuss the magnetocaloric effect under applied pressure, as well as the
barocaloric effect, in the Laves phase compounds RCo2 (R = Er, Ho and Dy). To this end,
I use a model Hamiltonian including both localized 4f spins and itinerant 3d electrons. The
calculations point out that (i) for an applied pressure of 1.0 GPa the peaks of the magnetocaloric
potentials [�S]M and [�Tad]M are shifted to lower temperatures, but their magnitudes remain
almost unchanged; (ii) the magnetocaloric potentials exhibit sizable values in a wider range of
temperatures, when both magnetic field and pressure are changed; (iii) the peaks of the
barocaloric potentials [�S]B and [�Tad]B can be as large as the magnetocaloric ones.

1. Introduction

The magnetocaloric effect [1, 2] is intrinsic to all magnetic
materials and is basically the entropy change due to the
application of an external magnetic field. The magnetocaloric
effect is characterized by the isothermal entropy change
[�S]M and by the adiabatic temperature change [�Tad]M upon
magnetic field variation. The barocaloric effect [3, 4] is the
entropy change due to the application of an external pressure.
The barocaloric effect is characterized by the isothermal
entropy change [�S]B and by the adiabatic temperature
change [�Tad]B upon pressure variation. The magnetocaloric
effect in the Laves phase intermetallic compounds RCo2 has
already been studied in the literature [5–12]. Experimental
and theoretical works show that at ambient pressure the
compounds ErCo2, HoCo2 and DyCo2, which undergo a
first order magnetic phase transition, exhibit large values of
the isothermal entropy change around the magnetic ordering
temperature. However, the magnetocaloric effect under applied
pressure and the barocaloric effect in these compounds have
not been studied yet.

In this work, the barocaloric effect and the magnetocaloric
effect under applied pressure in the compounds RCo2,
(R = Er, Ho and Dy) are theoretically discussed. To this end,
a model Hamiltonian taking into account both the localized
4f spins of rare earth ions and itinerant 3d electrons of the
Co ions is used. The crystalline electrical field effect on the
4f ground multiplet of the rare earth ions was also included in

the model. The effect of the magnetoelastic interaction on the
rare earth ions was considered in the framework of the Kittel
model [13]. On the other hand, the effect of the magnetoelastic
interaction on the itinerant electrons was considered in the
framework of the model developed by Duc et al [14]. The
effect of an applied pressure was phenomenologically included
via the exchange interaction integral between 4f spins and via
the dispersion relation of itinerant electrons.

The theoretical calculations of the magnetocaloric
potentials [�S]M and [�Tad]M at ambient pressure in the
compounds ErCo2, HoCo2 and DyCo2 are in good agreement
with the available experimental data [6, 15]. Besides, the
theoretically calculated magnetocaloric potentials [�S]M and
[�Tad]M under simultaneous variation of the magnetic field and
pressure exhibit large values in a wider range of temperatures.
The calculations also show that the barocaloric potentials
[�S]B and [�Tad]B in these compounds can be as large as
the magnetocaloric potentials [�S]M and [�Tad]M at ambient
pressure. These findings open a brand new horizon in the
study of the magnetocaloric effect and the barocaloric effect
in compounds undergoing a first order phase transition.

2. Formulation

The starting point to calculate the magnetocaloric effect in
the series of compounds RCo2 is the model Hamiltonian
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The Hamiltonian Hd describes the itinerant electrons, where
the first term is a reference energy; the second term describes
the electron hopping, where Tilσ = ∑

k ε̃kσ eik(Ri −Rl ) is the
electron hopping energy, and ε̃kσ is a renormalized electron
dispersion relation. The third term describes the electron–
electron interaction, where U is the Coulomb interaction
parameter. The fourth term describes the coupling with the
4f spins, where λdf is an exchange interaction parameter. The
last term describes the coupling with the applied magnetic field
(B), where μB is the Bohr magneton and gd is the Landé factor
of the itinerant electrons. The Hamiltonian Hf describes a
subsystem of localized 4f spins, where the first term describes
the interaction between rare earth ions, where J f

i is the total
angular momentum of rare earth ions and λil is the exchange
interaction integral. The second term represents the Zeeman
interaction between the rare earth total angular momentum and
the applied magnetic field, where gf is the Land é factor of rare
earth ions. The third term describes the coupling between rare
earth spin and the spin of the itinerant electrons. The last term
describes the crystalline electrical field effect on the 4f ground
multiplet of the rare earth ions. For the cubic symmetry, the
crystalline electrical field Hamiltonian HCF is given by [16]
HCF

i = W [x(O0
4 + 5O4

4 )/F4 + (1 − |x |)(O0
6 − 21O4

6 )/F6]i ,
where W is an energy scale and x gives the relative importance
of the fourth and sixth order terms. On

m are the Stevens
operators [17]; F4 and F6 are numerical factors common to
all matrix elements.

The exchange interaction integral λil depends on the
distance between neighboring sites in the crystalline lattice.
As the temperature is increased, lattice vibrations take
place, changing the distance between neighboring sites and
consequently the exchange interaction integral. The exchange
interaction integral can be written as [13] λ(r) = λ0(r0) +
λ1(r0)J f

i · J f
l , where λ0 is the bare value of the exchange

interaction integral, which depends on the fixed position (r0) of
the ions in the crystalline lattice. λ1(r0) = κ[(dλ(r)/dr)2]r=r0 ,
where κ is a proportionality constant, depends on the vibrations
of the ions. Applied pressure also changes the distance
between neighboring sites so that the exchange interaction
integral and consequently the magnetic ordering temperature
will be a function of pressure. The effect of applied pressure
is phenomenologically incorporated in the model through the
renormalization of the parameters λ0 and λ1 in the form λ̃0 =
α0λ0 and λ̃1 = α1λ1, where α0 and α1 are proportionality
constants. Using λ = λ̃0 + λ̃1 J f

i · J f
l and taking the mean field

approximation for the spin–spin interaction, the Hamiltonian

Hf can be explicitly written as
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f = −

∑
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This mean field Hamiltonian describes a sublattice of rare earth
ions under the action of the external magnetic field and the
effective fields 〈J f〉 and 〈sd〉. Here λeff

0 = α0λ0 Zn and λeff
1 =

α1λ1 Zn , where Zn is the number of nearest neighbors. δ, θ and
ϕ are the angles between the applied magnetic field direction
and the crystallographic axes x , y and z respectively. For the
sake of simplicity, the anisotropy in the mean value 〈sd〉 and
in the exchange parameters λ0 and λ1 is neglected. The mean
value 〈J f

k 〉 (k = x, y, z) in equation (3) is calculated by 〈J f
k 〉 =

(
∑

j 〈E j | J f
k | E j 〉e−βE j )/

∑
j e−βE j , where β = 1/kBT with

kB being the Boltzmann constant. E and |E〉 are respectively
the energy eigenvalues and eigenvectors of the mean field
Hamiltonian HMF

f . In order to calculate the mean value 〈sd〉
associated with the Co sublattice it is necessary to know
the 3d-electron dispersion relation, which is also affected by
the lattice vibrations through the electron–phonon interaction.
For the sake of simplicity, it is considered that the lattice
vibrations renormalize the electron dispersion relation through
a temperature dependent parameter [18] [1−γ el(M3d)2], where
M3d is the magnetization of the Co sublattice and γ el is a
magnetoelastic coupling parameter. The effect of an applied
pressure on the electron dispersion relation is incorporated
in the model through the parameter αel. Therefore, the
renormalized electron dispersion relation, taking into account
the effect of an external pressure and lattice vibrations, is
given by ε̃k = αel[1 − γ el(M3d)2]εk . Taking the mean field
approximation and using si = (1/2)

∑
σ σniσ and gd = 2, the

Hamiltonian Hd turns out to be

HMF
d =

∑

iσ

(ε0 + U〈nd
−σ 〉 + 0.25σλdf〈J f〉

− σμB B)d+
iσ diσ +

∑

ilσ

Tilσ d+
iσ dlσ . (4)

The local Green’s function for the above Hamiltonian is given
by [18]

g3d
00σ (z) =

∫ {
ρ0(ε

′) dε′}{z − αel[1 − γ el(M3d)2]ε′ − ε0

− U〈nd
−σ 〉 − 0.25σλdf〈J f〉 + σμB B

}−1
(5)

where z = ε+ i0 and ρ0(ε
′) is a standard paramagnetic density

of states. The spin dependent density of states for 3d electrons
is calculated by ρ3d

σ (ε) = − 1
π

Im g3d
00σ (z). The magnetization

at the Co sublattice is calculated by M3d(T, B, p) = 5(〈n3d
↑ 〉−

〈n3d
↓ 〉), where the factor of five accounts for the degeneracy

of the 3d states. The electron occupation number per spin
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direction is given by 〈n3d
σ 〉 = ∫

ρ3d
σ (ε) f (ε) dε, where f (ε)

is the Fermi distribution function.
The magnetization at the rare earth sublattice is calculated

by M4f(T, B, p) = gfμB〈J f〉, where 〈J f〉 = [〈J f
x 〉2 + 〈J f

y〉2 +
〈J f

z 〉2]1/2. The magnetization at the Co sublattice (M3d) and
the magnetization at the rare earth sublattice (M4f) should be
self-consistently determined. For initial values of 〈J f

x 〉, 〈J f
y〉,

〈J f
z 〉 and 〈sd〉, the energies eigenvalues and eigenvectors (E ;

|E〉) are calculated from the mean field Hamiltonian HMF
f

and then used to obtain new values for 〈J f〉. After this, the
magnetization at the Co sublattice is calculated and the mean
value 〈sd〉 is obtained through the relation 〈sd〉 = M3d/gdμB.
This self-consistent process is repeated until two consecutive
mean values of 〈J f〉 and 〈sd〉 are obtained within a numerical
precision of 0.001.

After solving the self-consistency, the total magnetization
of the compound RCo2 is calculated from M(T, B, p) =
M4f(T, B, p) + 2M3d(T, B, p). The total entropy is given by
S(T, B, p) = S4f

mag(T, B, p) + S3d
mag(T, B, p) + Slat(T, B, p),

where S4f
mag(T, B, p) is the contribution from the rare earth

ions [11], S3d
mag(T, B, p) represents the contribution from the

Co ions [18] and Slat(T, B, p) represents the contribution from
the crystalline lattice [18]. Once the total entropy is known,
the magnetocaloric potentials [�S]M and [�Tad]M for a fixed
pressure and upon magnetic field variation �B = B2 −
B1 are calculated by [�S]M = S(T, B2, p) − S(T, B1, p)

and [�Tad]M = T2 − T1 under the adiabatic condition
S(T2, B2, p) = S(T1, B1, p). In the case where both magnetic
field and pressure are changed, the magnetocaloric potentials
[�S]M and [�Tad]M are respectively calculated by [�S]M =
S(T, B2, p2) − S(T, B1, p1) and [�Tad]M = T2 − T1 under
the adiabatic condition S(T2, B2, p2) = S(T1, B1, p1). The
barocaloric potentials [3, 4] [�S]B and [�Tad]B for a fixed
magnetic field and upon pressure variation �p = p2 −
p1 are calculated by [�S]B = S(T, B, p2) − S(T, B, p1)

and [�Tad]B = T2 − T1 under the adiabatic condition
S(T2, B, p2) = S(T1, B, p1).

3. Results and discussion

In order to calculate the magnetocaloric effect in the Laves
phase compounds ErCo2, HoCo2 and DyCo2 it is necessary to
fix a set of model parameters. The total angular momentum
and the Landé factor were taken from the Hund rule. The
number of first nearest neighbors Zn , the coupling parameter
λdf and the factors [16] F4 and F6 were respectively taken as
Zn = 10, λdf = 0.2 meV, F4 = 60 and F6 = 13 860 for
all three compounds. The exchange interaction parameters (λ0

and λ1) and the crystalline electric field parameters (x and W )
used in the calculations are shown in table 1.

For describing the 3d electrons at the Co sites, a standard
paramagnetic density of states [19] was adopted. The Coulomb
interaction parameter was taken as U = 0.2, in units of the
3d bandwidth, and the number of electrons at the Co site
was taken as n = 1.6. The input parameters for the Co
sublattice were taken to assure that the Stoner criterion of the
itinerant magnetism (i.e., Uρ3d(εF ) > 1) is not fulfilled. The

Table 1. Exchange interaction parameters (λ0 and λ1) and the
crystalline electric field parameters (x and W ) for the compounds
ErCo2, HoCo2 and DyCo2.

Compound λ0 (meV) λ1 (meV) x W (meV)

ErCo2 0.0155 0.0013 −0.24 −0.042 14
HoCo2 0.0330 0.0025 −0.4687 0.051 702
DyCo2 0.0580 0.0017 −0.24 −0.042 14

magnetic field was applied along the 〈111〉 direction for the
compounds ErCo2 and DyCo2 and along the 〈100〉 direction
for HoCo2. The bare value of the Debye temperature was taken
as � = 230 K for the compounds ErCo2 and HoCo2 and � =
200 K for the compound DyCo2. The magnetoelastic coupling
parameter was taken as γ el = 0.1 for all three compounds. The
effect of an applied pressure of 1.0 GPa in ErCo2, HoCo2 and
DyCo2 was described by the set of parameters [α0 = 0.709;
α1 = 0.769]; [α0 = 0.696; α1 = 0.600] and [α0 = 0.912;
α1 = 0.880] respectively. For ambient pressure α0 = α1 = 1.0
for all compounds.

The theoretical calculations for the chosen set of model
parameters show that at ambient pressure the compounds
ErCo2, HoCo2 and DyCo2 undergo a first order magnetic phase
transition around 33 K, 80 K and 135 K respectively. In
figures 1(a) and (b) are respectively plotted the magnetocaloric
potentials [�S]M and [�Tad]M calculated upon magnetic
field variation from 0 to 5 T at ambient pressure (solid
lines) and for an applied pressure of 1.0 GPa (dashed lines).
Notice that the agreement between the theoretical calculations
and the available experimental data [6, 15] (symbols) at
ambient pressure is very good. However, the change of
sign experimentally observed at low temperature in the
magnetocaloric curves of HoCo2 is not reproduced by the
present calculations. In order to theoretically obtain the
anomaly at low temperature, which is due to the change
of the easy magnetization direction [20] from 〈110〉 at low
temperatures to 〈100〉 at temperatures above 14 K, it is
necessary to self-consistently calculate the magnetoelastic
coupling parameter in terms of the electronic structure of the
compound. However, this kind of calculation is more complex
and is not in the scope of the present work.

I have also calculated the magnetocaloric potentials
[�S]M and [�Tad]M in ErCo2 when both magnetic field and
pressure are changed. I have chosen four particular procedures
to change the magnetic field and applied pressure. In the first
process, the compound is initially under constant magnetic
field (B = 0 or 5 T) at high temperature and ambient pressure.
When the temperature goes down, an applied pressure of
1.0 GPa is suddenly applied at 25.5 K and kept fixed until 0 K.
In this particular case of magnetic field and pressure variation,
the magnetocaloric potentials [�S]M and [�Tad]M exhibit
two peaks (dashed lines in figures 2(a) and (b) respectively).
The unusual second peak at low temperature occurs because
when the pressure of 1.0 GPa is suddenly applied at 25.5 K
the magnetic order is destroyed so that the magnetocaloric
potentials go to zero. As the temperature decreases somewhat
more, the magnetic order is again established so that the
magnetocaloric potentials get large values, giving rise to
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Figure 1. Magnetocaloric potentials [�S]M (a) and [�Tad]M (b) in the compounds ErCo2, HoCo2 and DyCo2 for magnetic field variation
from 0 to 5 T. Solid and dashed lines are the theoretical calculations for p = 0 and p = 1.0 GPa respectively. Symbols represent the available
experimental data [6, 15].

Figure 2. Magnetocaloric potentials [�S]M (a) and [�Tad]M (b) in the compound ErCo2 for magnetic field and pressure variation. Dashed
lines, squares, dotted lines and solid lines represent respectively the calculations for the first, second, third and fourth processes of magnetic
field and pressure variation (see text for details).

the second peak in the magnetocaloric curves. It should
be emphasized that the second peak appears because the
chosen temperature of 25.5 K to change the applied pressure
lies around the magnetic ordering temperature. However,
if the pressure is applied at a given temperature far from
this magnetic ordering temperature, the two peaks in the
magnetocaloric curves disappear.

In the second process, the compound is initially under
constant magnetic field (B = 0 or 5 T) at high temperature
and ambient pressure. When the temperature goes down, an
external pressure is smoothly applied from 0 to 1.0 GPa in
the temperature interval from 35 to 25.5 K. Below 25.5 K
the pressure is kept constant at 1.0 GPa. This process
is shown by curve 1 of figure 3. With this particular
choice of the magnetic field and pressure variation, the
magnetocaloric potential [�S]M exhibits an almost constant
value in a wider temperature range, as is represented by the

squares in figure 2(a). This type of behavior in the [�S]M

curves occurs due to the competition between the decrease of
temperature and the smooth increase of the applied pressure in
the establishment of the magnetic order.

In the third process, a pressure of 1.0 GPa is applied in the
absence of an external magnetic field (B = 0) for the whole
range of temperatures, while for a magnetic field of 5 T there is
no pressure applied. In this case, the magnetocaloric potentials
[�S]M and [�Tad]M also exhibit large values in a wider range
of temperatures (dotted lines in figures 2(a) and (b)). In the
fourth process, a pressure of 1.0 GPa is applied when the
magnetic field is 5 T, while no pressure is applied when the
magnetic field is absent. In this case, there is a change of
sign in the [�S]M and [�Tad]M curves at a given temperature
(solid lines in figures 2(a) and (b)). This anomaly is due
to the competition between the magnetic field and pressure
in the establishment of the magnetic order. It disappears as

4
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Figure 3. Pressure variation for calculating [�S]M and [�Tad]M in
the compounds ErCo2, (curve 1) HoCo2 (curve 2) and DyCo2

(curve 3) shown in figure 4.

the applied pressure gets smaller or the magnetic field gets
larger.

Similar calculations of the magnetocaloric effect in HoCo2

and DyCo2 have been done for applied pressure variations
according to the processes respectively shown by curves 2
and 3 in figure 3. Again, the chosen temperatures to change
the pressure lie around the magnetic ordering temperatures,
where the competition between magnetic field and pressure
to establish the magnetic order is strong. In figures 4(a)
and (b) are respectively depicted the magnetocaloric potentials
[�S]M and [�Tad]M in ErCo, HoCo2 and DyCo2, calculated
for magnetic field variation from 0 to 5 T and pressure
variation according to the processes shown in figure 3.
From figure 4(a), a broadening of all [�S]M curves around
the magnetic ordering temperature can be observed. This
behavior is important for magnetic refrigerators operating
in the Ericsson cycle. It should be said that similar
behavior in the [�S]M curve has also been observed in
composite materials [21, 22] made up of more than one

type of magnetic materials with different magnetic ordering
temperatures.

In figures 5(a) and (b) are plotted the barocaloric potentials
[�S]B and [�Tad]B in ErCo2, calculated for a fixed magnetic
field of 1 T and pressure variation from 1.0 to 0 GPa
(solid lines). For the sake of comparison, the corresponding
magnetocaloric potentials [�S]M and [�Tad]M calculated at
ambient pressure and for a magnetic field variation from 0 to
1 T (dashed lines) have also been plotted in these figures. It
can be observed that the peaks of the barocaloric potentials
are larger than the peaks of the magnetocaloric potentials.
Experimental data of the barocaloric potentials [�S]B and
[�Tad]B in ErCo2 are necessary to confirm or reject the
present theoretical calculations. It should be mentioned that
it is expected that the curves of the barocaloric potentials in
ErCo2, like the magnetocaloric ones, exhibit small values at
low temperatures. Therefore, the values of the calculated
barocaloric potentials [�S]B and [�Tad]B shown in figures 5(a)
and (b) can be somewhat exaggerated at low temperatures, due
to the fact that the magnetoelastic coupling is considered here,
as a fixed parameter of the model. Similar behavior is also
observed in the barocaloric potentials, not shown in this paper,
for the compounds HoCo2 and DyCo2.

In conclusion, the magnetocaloric effect under applied
pressure as well as the barocaloric effect in the compounds
ErCo2, HoCo2 and DyCo2 has been discussed in this
work. The theoretical calculations show that (i) an applied
pressure of 1.0 GPa shifts the peaks of the magnetocaloric
potentials [�S]M and [�Tad]M to lower temperatures without
substantial changes in their magnitudes; (ii) the barocaloric
potentials [�S]B and [�Tad]B around the magnetic ordering
temperature are as large as their magnetocaloric counterparts;
(iii) the magnetocaloric potentials [�S]M and [�Tad]M under
simultaneous variation of the applied magnetic field and
pressure exhibit special features depending on the specific
procedure of magnetic field and pressure variation. Whether
or not this new principle proves its practical application
in magnetic refrigeration, it is very interesting from the
fundamental physics point of view to study the magnetocaloric

Figure 4. Magnetocaloric potentials [�S]M (a) and [�Tad]M (b) in the compounds ErCo2, HoCo2 and DyCo2 for magnetic field variation
from 0 to 5 T and pressure variation from 0 to 1.0 GPa according to the processes shown in figure 3.
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Figure 5. Barocaloric potentials [�S]B (a) and [�Tad]B (b) in the compound ErCo2 for a fixed magnetic field of 1 T and pressure variation
from 1.0 to 0 GPa (solid lines). Dashed lines represent the magnetocaloric potentials [�S]M and [�Tad]M calculated at ambient pressure and
magnetic field variation from 0 to 1 T.

effect changing both external magnetic field and applied
pressure.
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